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Operating Systems

Process Scheduling
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Process Scheduling
n Basic Concepts

n Scheduling Criteria

n Scheduling Algorithms

n Real-Time Scheduling

n Algorithm Evaluation
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Basic Concepts

n Maximum CPU utilization obtained with
multiprogramming.

n CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and I/O wait.

n CPU burst distribution.



Hikmat Farhat Operating Systems 4

Alternating Sequence of CPU And
I/O Bursts
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Histogram of CPU-burst Times
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Scheduling Modules

n The task of allocating ready processes to the
available processor can be divided into two parts

1. Process scheduling, refers to the decision-making
policies to determine the order in which processes
should use the CPU, this task is done by the
scheduler.

2. The actual binding of the selected process to a CPU
which involves saving the data of the current process,
loading the data of the selected process and
transferring control to it. This task is done by the
dispatcher.
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CPU Scheduler

n Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

n CPU scheduling decisions may take place when process:
1. Switches from running to waiting state.(I/O request)

2. Switches from running to ready state. (Interrupt)

3. Switches from waiting to ready.(I/O complete)

4. Terminates.

n Scheduling under 1 and 4 is nonpreemptive.

n All other scheduling is preemptive.
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Preemptive Scheduling

n Preemptive scheduling forces a process to yield
the CPU.

n This could happen even if the process can still use
the CPU.

n Preemptive scheduling is important since a
process entering an infinite loop will keep all
other processes waiting forever.

n Preemptive scheduling is usually done using a
timer.
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Dispatcher

n Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:
n switching context

n switching to user mode

n jumping to the proper location in the user program to
restart that program

n Dispatch latency – time it takes for the dispatcher
to stop one process and start another running.
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Scheduling Criteria

n CPU utilization – keep the CPU as busy as possible

n Throughput – # of processes that complete their
execution per time unit.

n Turnaround time – amount of time from the
submission of a process to its completion.

n Waiting time – amount of time a process has been
waiting in the ready queue.

n Response time - amount of time a process starts
“producing” results.
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Optimization Criteria

n Max CPU utilization

n Max throughput

n Min turnaround time

n Min waiting time

n Min Response time
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First-Come, First-Served (FCFS)
Scheduling

n The first process that requests the CPU will be
allocated the CPU.

n Nonpreemptive: the running process holds the
CPU until it choose to release it, either by
terminating or requesting I/O

n Easily implemented
n A new process is inserted at the tail of the queue
n The head of the queue is selected to run.
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Example
Process Burst Time

P1 24
 P2 3
 P3  3

n Suppose that the processes arrive into the ready queue in
the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

n Waiting time for P1  = 0; P2  = 24; P3 = 27
n Average waiting time:  (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300
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FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
 P2 , P3 , P1 .

n The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0; P3 = 3
n Average waiting time:   (6 + 0 + 3)/3 = 3
n Much better than previous case.
n Convoy effect short process behind long process

P1P3P2

63 300
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Shortest-Job-First (SJF)
Scheduling

n Associate with each process the length of its next CPU
burst.  Use these lengths to schedule the process with the
shortest time.

n Two schemes:
n nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst.
n preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt.  This
scheme is know as the
Shortest-Remaining-Time-First (SRTF).

n SJF is optimal – gives minimum average waiting time for a
given set of processes.
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Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

n SJF (non-preemptive)

n Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive
SJF

P1 P3 P2

73 160

P4

8 12
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Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

n SJF (preemptive)

n Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16



Hikmat Farhat Operating Systems 18

Determining Length of Next
CPU Burst

n Can only estimate the length.

n Can be done by using the length of previous CPU
bursts, using exponential averaging.
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Prediction of the Length of the Next
CPU Burst
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Priority Scheduling

n A priority number (integer) is associated with each process
n The CPU is allocated to the process with the highest

priority (smallest integer ≡ highest priority).
n Preemptive
n nonpreemptive

n SJF is a priority scheduling where priority is the predicted
next CPU burst time.

n Problem ≡ Starvation – low priority processes may never
execute.

n Solution ≡ Aging – as time progresses increase the priority
of the process.
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Round Robin (RR)

n Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds.  After this time has elapsed,
the process is preempted and added to the end of the ready
queue.

n If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once.  No process waits
more than (n-1)q time units.

n Performance
n q large fi FCFS
n q small fi q must be large with respect to context switch,

otherwise overhead is too high.
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Example of RR with Time
Quantum = 20

Process Burst Time
P1 53
 P2  17
 P3 68
 P4  24

n The Gantt chart is:

n Typically, higher average turnaround than SJF, but
better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162



Hikmat Farhat Operating Systems 23

Time Quantum and Context
Switch Time
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Turnaround Time Varies With The
Time Quantum
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Example

n Compute the average wait, turnaround and response time using FCFS scheduling for the
following processes, assuming that a context switch consumes 2 ms. (no latency for
scheduler, 2ms for dispatcher. Scheduler sets the clock for quantum duration.)

Process          Burst Time          Arrival Time

P1 53 0

 P2  17 23

 P3 68 24

 P4  24 31

n P1: wait=2, ta=55, Rt=2

n P2: wait=53+2x2-23=34, ta=34+17=51, Rt=34

n P3: wait=53+17+2x3-24=52, ta=52+68=120, Rt=52

n P4: wait=53+17+68+2x4-31=115, ta=115+24=139, Rt=115

n Ave. Wait=Ave. Rt= (2+34+52+115)/4=50.25

n Ave. Ta=(55+51+120+139)/4=91.25
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n Same but assume nonpreemptive SJF
n Since the algorithm is nonpreemptive p1 runs until it

completes at t=53.
n At t=53 all process are in the ready state thus they are

scheduled:p2,p4,p3
n P1: Wait=2, Rt=2
n P2: Wait=53+2x2-23=34 Rt=34
n P4: Wait=53+17+2x3-31=45, Rt=45
n P3: Wait=53+17+24+2x4-24=78, Rt=78
n Ave. Wait=Ave. Rt= (2+34+45+78)/4=39.75
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n Same but assume preemptive SJF.
n The Gantt chart

n P1                    P2                      P4                              P1                       P3

n P1: Wait= 2+47=49, Rt=2
n P2: Wait=2, Rt=2
n P3: Wait=104-24=80, Rt=80
n P4: Wait=44-31=13, Rt=13
n Ave. Wait=(49+2+80+13)/4=36
n Ave. Rt=(2+2+80+13)/4=24.25

0   2                        23  25                     42   44                                68  70                              102  104                                 172
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n Assume scheduling is done RR with quantum=10ms

n P1 runs for 30ms without interruption.

n At t=30 P2 and P3 are already in the ready queue. P1 is put
in the ready state and P2 is scheduled to run

n At t=31 P4 arrives and is appended to the tail of the queue

P2 P3Head tailP1

P3 P1 P4Head tail 
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n The Gantt char looks as follows

n P1: Wait=2+22+32+25+22=103, Rt=2

n P2: Wait=9+32+32=73, Rt=9

n P3: Wait=18+32+25+22+5=102, Rt=18

n P4: Wait=31+32+25=88, Rt=31

n Ave. Wait=(103+73+102+88)/4=91.5

n Ave. Rt=(2+9+18+31)/4=15

     2            32          42          52          62          72          82          92         102        112        115        125         135       145        155        158      190

P1         P2          P3         P1           P4         P2            P3         P1          P4          P2          P3       P1            P4         P3            P1        P3
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n Assume RR with quantum=30ms.
n

n P1: Wait=2+51=53, Rt=2
n P2: Wait=9, Rt=9
n P3: Wait=27+55=83, Rt=27
n P4: Wait=77, Rt=77
n Ave. Wait= (53+9+83+77)/4=55.5
n Ave. Rt=(2+9+27+77)/4=28.75

P1 P2 P3 P1 P4 P3

32 51 81 108 134 174
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Multilevel Queue

n Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

n Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

n Scheduling must be done between the queues.
n Fixed priority scheduling; (i.e., serve all from foreground then

from background).  Possibility of starvation.
n Time slice – each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e., 80% to foreground in
RR

n 20% to background in FCFS
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Multilevel Queue Scheduling
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Process          Burst Time          Arrival Time Priority

P1 53 0 1

 P2  17 23 1

 P3 68 24 0

 P4  24 31 0

n Two queues both use RR with quantum =10ms

n A scheduling decision is made every 10 ms or if a
process terminates.
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P3(68)

P1(23)P2(17)

T=30

P3(58)P4(24)

P1(23)P2(17)

T=40

P4(14) P3(58)

P1(23)P2(17)

T=50

P3(48)P4(14)

P1(23)P2(17)

T=60

P4(4) P3(48)

P1(23)P2(17)

T=70

P3(38)P4(4)

P1(23)P2(17)

T=80

P3(38)

P1(23)P2(17)

T=84

P1(23)P2(17)

T=122

P2(7) P1(23)

T=132
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Multilevel Feedback Queue

n A process can move between the various queues;
aging can be implemented this way.

n Multilevel-feedback-queue scheduler defined by
the following parameters:
n number of queues
n scheduling algorithms for each queue
n method used to determine when to upgrade a process
n method used to determine when to demote a process
n method used to determine which queue a process will

enter when that process needs service
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Example of Multilevel Feedback
Queue

n Three queues:
n Q0 – time quantum 8 milliseconds

n Q1 – time quantum 16 milliseconds

n Q2 – FCFS

n Scheduling
n A new job enters queue Q0 which is served RR. When it gains

CPU, job receives 8 milliseconds.  If it does not finish in 8
milliseconds, job is moved to queue Q1.

n At Q1 job is again served RR and receives 16 additional
milliseconds.  If it still does not complete, it is preempted and
moved to queue Q2.
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Multilevel Feedback Queues
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Example of MLF
Process Burst Time

P1 53
 P2  17
 P3 68
 P4  24

n Assume that the system has three queues Q0,Q1 and Q2

n Q0 and Q1 are RR with quanta 10 and 20 ms.
n Q2 is FCFS
n A scheduling decision is made every 10 ms or if process

terminates.
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n P1 runs 10 ms, moves to Q1 runs an additional
20ms then moves to Q2.

P3(68)   P2(17)

P1(23)

P4(24)  P3(68)

P2(7)

P1(23)

P4(24)

P3(58)  P2(7)

P1(23)

T=30 T=40 T=50
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P4(14)P3(58)P2(7)

P1(23)

T=60

P4(14)P3(58)

P1(23)

T=67

P4(14)

P3(38)P1(23)

T=87

P3(38)P1(23)

T=101

P3(38)

T=124 T=162
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Example

Process          Burst Time          Arrival Time      Priority

P1 53 0     1

 P2  17 23     1

 P3 68 24     0

 P4  24 31                1

n A scheduling decision is made every 10ms or if a
process terminates.
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P3(68)

P2(17)

P1(23)

P3(58)P4(24)P2(17)

P1(23)

P3(58) P4(24)

P1(23)

T=30 T=40 T=57

P3(58)

P4(4)P1(23)

T=77

P3(38)P4(4)P1(23)

T=97
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Linux Scheduler

n The Linux scheduler differentiates between three
classes

1. Real-time FIFO

2. Real-time Round Robin

3. All others (i.e. interactive)

n Linux uses dynamic priority to schedule
processes.
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n The dynamic priority is computed by a “goodness”
function

n The goodness of all ready processes is computed
and the highest gets the CPU.

n The goodness of a real-time process is always
higher than any interactive process.
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n Linux makes a scheduling decision in the
following cases
n When a process yields the CPU.

n When a process “wakes-up”.

n After a return from a system call.

n When the quantum of a process expires
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Nice Value

n The nice value is a user settable priority
n It ranges from -20 to 20.
n The nice values is used to compute the dynamic

priority of a process.
n The default nice value is 0.
n Anyone can raise the nice value of the processes

he/she owns
n Only the administrator can lower the nice value of

a process.
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The goodness function

n The goodness function returns a large value for
real-time process, p
   1000+p.rt_priority

n This guarantees that real-time processes will
always be given priority over other processes.

n For an interactive processe, p, the goodness is
 if(p.counter==0)return 0;
 else
   return p.counter+(20-p.nice);
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The scheduler

n The trimmed down version of the scheduler

   if(current.state==waiting)delete_from_runqueue(current)

    next=idle_task()

    c=-1000

    for each p in runqueue

   do

w=goodness(p)

               if(w>c)

                    c=w

                    next=p

    if(c==0)recalculate_quanta()



Hikmat Farhat Operating Systems 49

Recalculate Quanta()

n counter=counter/2+(20-nice)/4+1

n The new quantum depends on how much was left
from the previous quantum and the nice value.

n This way I/O bound process have higher priority
and therefore faster response.
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Example

n The system has three processes
n P1: for every 20ms run issues a system call
n P2: for every 10 ms run issues a system call.
n P3: waits for I/O, when it happens it needs 10ms to

handle it then goes back to sleep again.

n Assume that the I/O operation happens every
50ms and each counter is initialized to 6.(i.e.
60ms)

n Further assume that process arrived as P1,P2,P3
and that P3 is initially in wait state.
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P1

0 20

At t=20
P1 issues
A syscall

P1(4),p2(6),p3(6)
Switch to P2

P1 P2

0 20 30

At t=30
P2 issues
A syscall

P1(4),p2(5),P3(6)
Keep P2

P1 P2 P2

0 20 30 40

At t=40
P2 issues
A syscall

P1(4),P2(4),P3(6)
Switch to P1

P1 P2 P2 P1

0 20 30 40 50

At t=50
I/O inter

P1(3),P2(4),P3(6)
Switch to P3
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P1 P2 P2 P1 P3

0 20 30 40 50 60

At t=60
P3 waits

P1(3),P2(4),P3(5)
Swtich to P2

P1 P2 P2 P1 P3 P2

0 20 30 40 50 60 70

At t=70
P2 issues
syscall

P1(3),P2(3),P3(5)
Switch to P1

P1 P2 P2 P1 P3 P2

0 20 30 40 50 60 70

At t=90
P1 issues
syscall

P1(1),P2(3),P3(5)
Switch to P2

P1 P2 P2 P1 P3 P2

0 20 30 40 50 60 70

At t=100
Syscall+
I/O

P1(1),P2(2),P3(5)
Switch to P3P1

P1

90

P2

90 100
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P1 P2 P2 P1 P3 P2
At t=110
P3 yields
CPU

P1(1),P2(2),P3(4)
Switch to P2P1 P2

0 20 30 40 50 60 70 90 100

P3

110

P1 P2 P2 P1 P3 P2
At t=120
syscall

P1(1),P2(1),P3(4)
Switch to P1P1 P2

0 20 30 40 50 60 70 90 100

P3

110

P2

120

P2 P2 P1 P3 P2
At t=130
P3 quant.
expires

P1(0),P2(1),P3(4)
Switch to P2P1 P2

30 40 50 60 70 90 100

P3

110

P2

120

P1

130

P2 P1 P3 P2
At t=140
P2 quant.
expires

P1(0),P2(0),P3(4)
recalculateP1 P2

40 50 60 70 90 100

P3

110

P2

120

P1

130

P2

140
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n At t=140 P1 and P2’s quanta expire. Note that P3
is in the waiting state therefore all quanta in the
ready queue are 0 we need to recalculate.

n Calculation is done for ALL processes not just the
ones in the ready queue.

n P1: counter=0/2+5+1=6
n P2: counter=0/2+5+1=6
n P3: counter=4/2+5+1=8
n P3 is an interactive process gets higher priority!


