
Hikmat Farhat Operating Systems 1

Operating Systems

Process Scheduling

Hikmat Farhat Operating Systems 2

Process Scheduling
n Basic Concepts

n Scheduling Criteria

n Scheduling Algorithms

n Real-Time Scheduling

n Algorithm Evaluation

Hikmat Farhat Operating Systems 3

Basic Concepts

n Maximum CPU utilization obtained with
multiprogramming.

n CPU–I/O Burst Cycle – Process execution
consists of a cycle of CPU execution and I/O wait.

n CPU burst distribution.

Hikmat Farhat Operating Systems 4

Alternating Sequence of CPU And
I/O Bursts

Hikmat Farhat Operating Systems 5

Histogram of CPU-burst Times

Hikmat Farhat Operating Systems 6

Scheduling Modules

n The task of allocating ready processes to the
available processor can be divided into two parts

1. Process scheduling, refers to the decision-making
policies to determine the order in which processes
should use the CPU, this task is done by the
scheduler.

2. The actual binding of the selected process to a CPU
which involves saving the data of the current process,
loading the data of the selected process and
transferring control to it. This task is done by the
dispatcher.

Hikmat Farhat Operating Systems 7

CPU Scheduler

n Selects from among the processes in memory that are
ready to execute, and allocates the CPU to one of them.

n CPU scheduling decisions may take place when process:
1. Switches from running to waiting state.(I/O request)

2. Switches from running to ready state. (Interrupt)

3. Switches from waiting to ready.(I/O complete)

4. Terminates.

n Scheduling under 1 and 4 is nonpreemptive.

n All other scheduling is preemptive.

Hikmat Farhat Operating Systems 8

Preemptive Scheduling

n Preemptive scheduling forces a process to yield
the CPU.

n This could happen even if the process can still use
the CPU.

n Preemptive scheduling is important since a
process entering an infinite loop will keep all
other processes waiting forever.

n Preemptive scheduling is usually done using a
timer.

Hikmat Farhat Operating Systems 9

Dispatcher

n Dispatcher module gives control of the CPU to the
process selected by the short-term scheduler; this
involves:
n switching context

n switching to user mode

n jumping to the proper location in the user program to
restart that program

n Dispatch latency – time it takes for the dispatcher
to stop one process and start another running.

Hikmat Farhat Operating Systems 10

Scheduling Criteria

n CPU utilization – keep the CPU as busy as possible

n Throughput – # of processes that complete their
execution per time unit.

n Turnaround time – amount of time from the
submission of a process to its completion.

n Waiting time – amount of time a process has been
waiting in the ready queue.

n Response time - amount of time a process starts
“producing” results.

Hikmat Farhat Operating Systems 11

Optimization Criteria

n Max CPU utilization

n Max throughput

n Min turnaround time

n Min waiting time

n Min Response time

Hikmat Farhat Operating Systems 12

First-Come, First-Served (FCFS)
Scheduling

n The first process that requests the CPU will be
allocated the CPU.

n Nonpreemptive: the running process holds the
CPU until it choose to release it, either by
terminating or requesting I/O

n Easily implemented
n A new process is inserted at the tail of the queue
n The head of the queue is selected to run.

Hikmat Farhat Operating Systems 13

Example
Process Burst Time

P1 24
 P2 3
 P3 3

n Suppose that the processes arrive into the ready queue in
the order: P1 , P2 , P3
The Gantt Chart for the schedule is:

n Waiting time for P1 = 0; P2 = 24; P3 = 27
n Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

Hikmat Farhat Operating Systems 14

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order
 P2 , P3 , P1 .

n The Gantt chart for the schedule is:

n Waiting time for P1 = 6; P2 = 0; P3 = 3
n Average waiting time: (6 + 0 + 3)/3 = 3
n Much better than previous case.
n Convoy effect short process behind long process

P1P3P2

63 300

Hikmat Farhat Operating Systems 15

Shortest-Job-First (SJF)
Scheduling

n Associate with each process the length of its next CPU
burst. Use these lengths to schedule the process with the
shortest time.

n Two schemes:
n nonpreemptive – once CPU given to the process it cannot be

preempted until completes its CPU burst.
n preemptive – if a new process arrives with CPU burst length less

than remaining time of current executing process, preempt. This
scheme is know as the
Shortest-Remaining-Time-First (SRTF).

n SJF is optimal – gives minimum average waiting time for a
given set of processes.

Hikmat Farhat Operating Systems 16

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

n SJF (non-preemptive)

n Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Non-Preemptive
SJF

P1 P3 P2

73 160

P4

8 12

Hikmat Farhat Operating Systems 17

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
 P2 2.0 4
 P3 4.0 1
 P4 5.0 4

n SJF (preemptive)

n Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Hikmat Farhat Operating Systems 18

Determining Length of Next
CPU Burst

n Can only estimate the length.

n Can be done by using the length of previous CPU
bursts, using exponential averaging.

:Define 4.

10 , 3.

burst CPU next the for value predicted 2.

burst CPU of lenght actual 1.

££

=

=

+

aa

t 1n

th
n nt

() .t nnn taat -+== 11

Hikmat Farhat Operating Systems 19

Prediction of the Length of the Next
CPU Burst

Hikmat Farhat Operating Systems 20

Priority Scheduling

n A priority number (integer) is associated with each process
n The CPU is allocated to the process with the highest

priority (smallest integer ≡ highest priority).
n Preemptive
n nonpreemptive

n SJF is a priority scheduling where priority is the predicted
next CPU burst time.

n Problem ≡ Starvation – low priority processes may never
execute.

n Solution ≡ Aging – as time progresses increase the priority
of the process.

Hikmat Farhat Operating Systems 21

Round Robin (RR)

n Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed,
the process is preempted and added to the end of the ready
queue.

n If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU time
in chunks of at most q time units at once. No process waits
more than (n-1)q time units.

n Performance
n q large fi FCFS
n q small fi q must be large with respect to context switch,

otherwise overhead is too high.

Hikmat Farhat Operating Systems 22

Example of RR with Time
Quantum = 20

Process Burst Time
P1 53
 P2 17
 P3 68
 P4 24

n The Gantt chart is:

n Typically, higher average turnaround than SJF, but
better response.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Hikmat Farhat Operating Systems 23

Time Quantum and Context
Switch Time

Hikmat Farhat Operating Systems 24

Turnaround Time Varies With The
Time Quantum

Hikmat Farhat Operating Systems 25

Example

n Compute the average wait, turnaround and response time using FCFS scheduling for the
following processes, assuming that a context switch consumes 2 ms. (no latency for
scheduler, 2ms for dispatcher. Scheduler sets the clock for quantum duration.)

Process Burst Time Arrival Time

P1 53 0

 P2 17 23

 P3 68 24

 P4 24 31

n P1: wait=2, ta=55, Rt=2

n P2: wait=53+2x2-23=34, ta=34+17=51, Rt=34

n P3: wait=53+17+2x3-24=52, ta=52+68=120, Rt=52

n P4: wait=53+17+68+2x4-31=115, ta=115+24=139, Rt=115

n Ave. Wait=Ave. Rt= (2+34+52+115)/4=50.25

n Ave. Ta=(55+51+120+139)/4=91.25

Hikmat Farhat Operating Systems 26

n Same but assume nonpreemptive SJF
n Since the algorithm is nonpreemptive p1 runs until it

completes at t=53.
n At t=53 all process are in the ready state thus they are

scheduled:p2,p4,p3
n P1: Wait=2, Rt=2
n P2: Wait=53+2x2-23=34 Rt=34
n P4: Wait=53+17+2x3-31=45, Rt=45
n P3: Wait=53+17+24+2x4-24=78, Rt=78
n Ave. Wait=Ave. Rt= (2+34+45+78)/4=39.75

Hikmat Farhat Operating Systems 27

n Same but assume preemptive SJF.
n The Gantt chart

n P1 P2 P4 P1 P3

n P1: Wait= 2+47=49, Rt=2
n P2: Wait=2, Rt=2
n P3: Wait=104-24=80, Rt=80
n P4: Wait=44-31=13, Rt=13
n Ave. Wait=(49+2+80+13)/4=36
n Ave. Rt=(2+2+80+13)/4=24.25

0 2 23 25 42 44 68 70 102 104 172

Hikmat Farhat Operating Systems 28

n Assume scheduling is done RR with quantum=10ms

n P1 runs for 30ms without interruption.

n At t=30 P2 and P3 are already in the ready queue. P1 is put
in the ready state and P2 is scheduled to run

n At t=31 P4 arrives and is appended to the tail of the queue

P2 P3Head tailP1

P3 P1 P4Head tail

Hikmat Farhat Operating Systems 29

n The Gantt char looks as follows

n P1: Wait=2+22+32+25+22=103, Rt=2

n P2: Wait=9+32+32=73, Rt=9

n P3: Wait=18+32+25+22+5=102, Rt=18

n P4: Wait=31+32+25=88, Rt=31

n Ave. Wait=(103+73+102+88)/4=91.5

n Ave. Rt=(2+9+18+31)/4=15

 2 32 42 52 62 72 82 92 102 112 115 125 135 145 155 158 190

P1 P2 P3 P1 P4 P2 P3 P1 P4 P2 P3 P1 P4 P3 P1 P3

Hikmat Farhat Operating Systems 30

n Assume RR with quantum=30ms.
n

n P1: Wait=2+51=53, Rt=2
n P2: Wait=9, Rt=9
n P3: Wait=27+55=83, Rt=27
n P4: Wait=77, Rt=77
n Ave. Wait= (53+9+83+77)/4=55.5
n Ave. Rt=(2+9+27+77)/4=28.75

P1 P2 P3 P1 P4 P3

32 51 81 108 134 174

Hikmat Farhat Operating Systems 31

Multilevel Queue

n Ready queue is partitioned into separate queues:
foreground (interactive)
background (batch)

n Each queue has its own scheduling algorithm,
foreground – RR
background – FCFS

n Scheduling must be done between the queues.
n Fixed priority scheduling; (i.e., serve all from foreground then

from background). Possibility of starvation.
n Time slice – each queue gets a certain amount of CPU time which

it can schedule amongst its processes; i.e., 80% to foreground in
RR

n 20% to background in FCFS

Hikmat Farhat Operating Systems 32

Multilevel Queue Scheduling

Hikmat Farhat Operating Systems 33

Process Burst Time Arrival Time Priority

P1 53 0 1

 P2 17 23 1

 P3 68 24 0

 P4 24 31 0

n Two queues both use RR with quantum =10ms

n A scheduling decision is made every 10 ms or if a
process terminates.

Hikmat Farhat Operating Systems 34

P3(68)

P1(23)P2(17)

T=30

P3(58)P4(24)

P1(23)P2(17)

T=40

P4(14) P3(58)

P1(23)P2(17)

T=50

P3(48)P4(14)

P1(23)P2(17)

T=60

P4(4) P3(48)

P1(23)P2(17)

T=70

P3(38)P4(4)

P1(23)P2(17)

T=80

P3(38)

P1(23)P2(17)

T=84

P1(23)P2(17)

T=122

P2(7) P1(23)

T=132

Hikmat Farhat Operating Systems 35

Multilevel Feedback Queue

n A process can move between the various queues;
aging can be implemented this way.

n Multilevel-feedback-queue scheduler defined by
the following parameters:
n number of queues
n scheduling algorithms for each queue
n method used to determine when to upgrade a process
n method used to determine when to demote a process
n method used to determine which queue a process will

enter when that process needs service

Hikmat Farhat Operating Systems 36

Example of Multilevel Feedback
Queue

n Three queues:
n Q0 – time quantum 8 milliseconds

n Q1 – time quantum 16 milliseconds

n Q2 – FCFS

n Scheduling
n A new job enters queue Q0 which is served RR. When it gains

CPU, job receives 8 milliseconds. If it does not finish in 8
milliseconds, job is moved to queue Q1.

n At Q1 job is again served RR and receives 16 additional
milliseconds. If it still does not complete, it is preempted and
moved to queue Q2.

Hikmat Farhat Operating Systems 37

Multilevel Feedback Queues

Hikmat Farhat Operating Systems 38

Example of MLF
Process Burst Time

P1 53
 P2 17
 P3 68
 P4 24

n Assume that the system has three queues Q0,Q1 and Q2

n Q0 and Q1 are RR with quanta 10 and 20 ms.
n Q2 is FCFS
n A scheduling decision is made every 10 ms or if process

terminates.

Hikmat Farhat Operating Systems 39

n P1 runs 10 ms, moves to Q1 runs an additional
20ms then moves to Q2.

P3(68) P2(17)

P1(23)

P4(24) P3(68)

P2(7)

P1(23)

P4(24)

P3(58) P2(7)

P1(23)

T=30 T=40 T=50

Hikmat Farhat Operating Systems 40

P4(14)P3(58)P2(7)

P1(23)

T=60

P4(14)P3(58)

P1(23)

T=67

P4(14)

P3(38)P1(23)

T=87

P3(38)P1(23)

T=101

P3(38)

T=124 T=162

Hikmat Farhat Operating Systems 41

Example

Process Burst Time Arrival Time Priority

P1 53 0 1

 P2 17 23 1

 P3 68 24 0

 P4 24 31 1

n A scheduling decision is made every 10ms or if a
process terminates.

Hikmat Farhat Operating Systems 42

P3(68)

P2(17)

P1(23)

P3(58)P4(24)P2(17)

P1(23)

P3(58) P4(24)

P1(23)

T=30 T=40 T=57

P3(58)

P4(4)P1(23)

T=77

P3(38)P4(4)P1(23)

T=97

Hikmat Farhat Operating Systems 43

Linux Scheduler

n The Linux scheduler differentiates between three
classes

1. Real-time FIFO

2. Real-time Round Robin

3. All others (i.e. interactive)

n Linux uses dynamic priority to schedule
processes.

Hikmat Farhat Operating Systems 44

n The dynamic priority is computed by a “goodness”
function

n The goodness of all ready processes is computed
and the highest gets the CPU.

n The goodness of a real-time process is always
higher than any interactive process.

Hikmat Farhat Operating Systems 45

n Linux makes a scheduling decision in the
following cases
n When a process yields the CPU.

n When a process “wakes-up”.

n After a return from a system call.

n When the quantum of a process expires

Hikmat Farhat Operating Systems 46

Nice Value

n The nice value is a user settable priority
n It ranges from -20 to 20.
n The nice values is used to compute the dynamic

priority of a process.
n The default nice value is 0.
n Anyone can raise the nice value of the processes

he/she owns
n Only the administrator can lower the nice value of

a process.

Hikmat Farhat Operating Systems 47

The goodness function

n The goodness function returns a large value for
real-time process, p
 1000+p.rt_priority

n This guarantees that real-time processes will
always be given priority over other processes.

n For an interactive processe, p, the goodness is
 if(p.counter==0)return 0;
 else
 return p.counter+(20-p.nice);

Hikmat Farhat Operating Systems 48

The scheduler

n The trimmed down version of the scheduler

 if(current.state==waiting)delete_from_runqueue(current)

 next=idle_task()

 c=-1000

 for each p in runqueue

 do

w=goodness(p)

 if(w>c)

 c=w

 next=p

 if(c==0)recalculate_quanta()

Hikmat Farhat Operating Systems 49

Recalculate Quanta()

n counter=counter/2+(20-nice)/4+1

n The new quantum depends on how much was left
from the previous quantum and the nice value.

n This way I/O bound process have higher priority
and therefore faster response.

Hikmat Farhat Operating Systems 50

Example

n The system has three processes
n P1: for every 20ms run issues a system call
n P2: for every 10 ms run issues a system call.
n P3: waits for I/O, when it happens it needs 10ms to

handle it then goes back to sleep again.

n Assume that the I/O operation happens every
50ms and each counter is initialized to 6.(i.e.
60ms)

n Further assume that process arrived as P1,P2,P3
and that P3 is initially in wait state.

Hikmat Farhat Operating Systems 51

P1

0 20

At t=20
P1 issues
A syscall

P1(4),p2(6),p3(6)
Switch to P2

P1 P2

0 20 30

At t=30
P2 issues
A syscall

P1(4),p2(5),P3(6)
Keep P2

P1 P2 P2

0 20 30 40

At t=40
P2 issues
A syscall

P1(4),P2(4),P3(6)
Switch to P1

P1 P2 P2 P1

0 20 30 40 50

At t=50
I/O inter

P1(3),P2(4),P3(6)
Switch to P3

Hikmat Farhat Operating Systems 52

P1 P2 P2 P1 P3

0 20 30 40 50 60

At t=60
P3 waits

P1(3),P2(4),P3(5)
Swtich to P2

P1 P2 P2 P1 P3 P2

0 20 30 40 50 60 70

At t=70
P2 issues
syscall

P1(3),P2(3),P3(5)
Switch to P1

P1 P2 P2 P1 P3 P2

0 20 30 40 50 60 70

At t=90
P1 issues
syscall

P1(1),P2(3),P3(5)
Switch to P2

P1 P2 P2 P1 P3 P2

0 20 30 40 50 60 70

At t=100
Syscall+
I/O

P1(1),P2(2),P3(5)
Switch to P3P1

P1

90

P2

90 100

Hikmat Farhat Operating Systems 53

P1 P2 P2 P1 P3 P2
At t=110
P3 yields
CPU

P1(1),P2(2),P3(4)
Switch to P2P1 P2

0 20 30 40 50 60 70 90 100

P3

110

P1 P2 P2 P1 P3 P2
At t=120
syscall

P1(1),P2(1),P3(4)
Switch to P1P1 P2

0 20 30 40 50 60 70 90 100

P3

110

P2

120

P2 P2 P1 P3 P2
At t=130
P3 quant.
expires

P1(0),P2(1),P3(4)
Switch to P2P1 P2

30 40 50 60 70 90 100

P3

110

P2

120

P1

130

P2 P1 P3 P2
At t=140
P2 quant.
expires

P1(0),P2(0),P3(4)
recalculateP1 P2

40 50 60 70 90 100

P3

110

P2

120

P1

130

P2

140

Hikmat Farhat Operating Systems 54

n At t=140 P1 and P2’s quanta expire. Note that P3
is in the waiting state therefore all quanta in the
ready queue are 0 we need to recalculate.

n Calculation is done for ALL processes not just the
ones in the ready queue.

n P1: counter=0/2+5+1=6
n P2: counter=0/2+5+1=6
n P3: counter=4/2+5+1=8
n P3 is an interactive process gets higher priority!

